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Abstract— Dynamic scene classification has been extensively
studied in computer vision due to its widespread applications.
The key to dynamic scene classification lies in jointly charac-
terizing spatial appearance and temporal dynamics to achieve
informative representation, which remains an outstanding task
in the literature. In this paper, we propose a unified framework
to extract spatial and temporal features for dynamic scene
representation. More specifically, we deploy two variants of
deep convolutional neural networks to encode spatial appearance
and short-term dynamics into short-term deep features (STDF).
Based on STDF, we propose using the autoregressive moving
average model to extract long-term frequency features (LTFF).
By combining STDF and LTFF, we establish the long–short-term
feature (LSTF) representations of dynamic scenes. The LSTF
characterizes both spatial and temporal patterns of dynamic
scenes for comprehensive and information representation that
enables more accurate classification. Extensive experiments on
three-dynamic scene classification benchmarks have shown that
the proposed LSTF achieves high performance and substantially
surpasses the state-of-the-art methods.

Index Terms— Dynamic scene classification, long-short term
feature, long term frequency feature.

I. INTRODUCTION

DYNAMIC scene classification has been an active research
area in computer vision because of its widespread appli-

cations in scene interpretation, traffic surveillance, and video
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content analysis [1]–[4]. Moreover, the significance of scene
classification also stems from its fundamentally important
roles in solving more challenging tasks. For instance, to find
ground vehicles by the unmanned aerial vehicle (UAV),
we first recognize the highway scenes, wherein the vehicle
targets are appearing with high possibility, and then the target
detection process can be accelerated.

Compared with the image-based scene classification [5], [6],
dynamic scene classification in videos is more challenging
due to the high complexity in extracting spatial and temporal
features from videos. In the past decades, it has stimulated a
vast amount of research works including SOE [7], SFA [8],
and CSR [9], etc. However, it remains an outstanding tasks
and the challenges are mainly in two folds. On the one
hand, it has to deal with the difficulties shared in still image
classification e.g., large variations in illumination, viewpoints
and scales. As shown in Fig. 1, exemplar shots in the same
category have large variations, making it very difficult for
classification. On the other hand, by the nature of dynamic
scenes, the addition of temporal dynamics further complicates
the classification. Every coin has two sides. As evidenced
in [10] exploring temporal information from motion is ben-
eficial to dynamic scene classification. Nevertheless, it is
nontrivial to obtain reliable motion clues due to complexity
of motion patterns in scenes, e.g., the flicker motion lasts in
very short time or motion of snowfall is too obscure to be
seen. To recognize these motion patterns, previous methods
often use consecutive frames or short video clips to capture
temporal clues. These methods failed to fully capture motions
in that only very small parts of the whole videos are used,
losing long-term dynamic information.

In fact, the long-term description of the video can alle-
viate the incomplete information extraction problem, due to
the holistic motion pattern in consideration. For example,
the flicker motion in lightning scene is too swift such that
most portions of the video clips or frames contain no lightning
motion, where the extracted features could confuse the classifi-
cation. But with long-term description, the flicker of lightning
motion is included in the holistic feature than can enhance the
classification process. Another example is the understanding of
repetitive or periodic motion, e.g., rotating wheel of windmill
and sea waves, where only incremental long-term observation
can explicitly reveal its properties.

When it comes to the interpretation of long term properties,
related methods have tried to employ long short-term mem-
ory (LSTM) [11]. The LSTM networks operate on frame-level
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Fig. 1. Example shots for dynamic scenes. Large variation within the same
category will make classification very difficult. And the existence of diverse
motion patterns is another problem to be tackled.

convolutional neural network (CNN) activations and learn long
term information over time. However, it usually needs a large
amount of samples for training and the application to dynamic
scene classification is rather restricted by inadequate samples
of dynamic scene videos.

In this paper, we propose long-short term features (LSTF)
to incorporate temporal dynamics and spatial information
in dynamic scenes in a unified framework. The LSTF is
established in two major stages. Firstly, we deploy variants
of deep CNNs to encode spatial appearance and short-term
dynamics into short-term deep features (STDF). In our set-
ting, VGGnet is served as frame-level CNNs for describ-
ing spatial appearance. And C3D is used to process video
clips, which retain both spatial and short-term temporal cues.
In these CNNs, there are multiple layers extracting features
from low level to high level, representing simple edges to
complex objects. We use high-level features for constructing
our STDF. Secondly, based on STDF, we compute long-
term frequency features (LTFF) by the autoregressive moving
average (ARMA) model, which effectively capture the long-
term temporal dynamics. Since these high level features are
related to objects in scenes, the LTFF describes the motion of
these objects from global long-term range. In comparison to
neural networks based LSTM, our LTFF is directly extracted
without training on a large number of samples and is there-
fore more effective. The spatial and short-term dynamics are
retained in STDF while long-term dynamics are fully captured
in LTFF. By concatenating STDF and LTFF into a holistic
feature vector, we achieves long-short term features (LSTF)
for comprehensive and informative representation of dynamic
scenes.

We summarize the contributions of this work in three major
aspects as follows:

1) We introduce a new unified framework to jointly encod-
ing spatial and temporal features, which establishes
more informative and comprehensive representation of
dynamic scenes for improved recognition performance.

2) We introduce the autoregressive moving average
(ARMA) model to extract long-term temporal features,
which is able to effectively capture motion patterns of
dynamic scenes for more informative representation.

3) We successfully apply two variants of convolutional
neural networks (CNNs) to extract both spatial and
short-term temporal features of dynamic scenes, which
have shown improved performance.

To evaluate the effectiveness of the LSTF for scene clas-
sification, we apply it to diverse dynamic scene recognition
tasks on three datasets. YUPENN [7] and Maryland [10] are
two natural dynamic scene datasets, while UCF-101 [12] is
the action dataset, which can be regarded as a special type
of dynamic scenes. Experimental results have shown that
the proposed method achieves high performance on all three
benchmark datasets and substantially exceeds most of state-
of-the-art methods.

II. RELATED WORK

In this section, we will review the most related work on
dynamic scene classification in terms of representations based
on hand-crafted features and deep-learned features.

A. Hand-Crafted Features

In the field of scene classification, there are plenty of
hand-crafted features, which are intentionally designed with-
out the learning process involved. These kind of features
describe scenes from either spatial properties or temporal
properties or both. The spatial properties can be obtained from
orientation, color, frequency and etc.. For example, the Scale-
Invariant Feature Transform (SIFT) descriptors proposed by
Lowe [13] has been widely used for scene classification. The
SIFT features make use of oriented gradient histograms to
capture the spatial appearance cues. Similarly, the Histogram
of Oriented Gradients (HOG) [14] also deploys the orientation
information. Compared to SIFT, however, HOG lacks the
rotation invariant property, which is more appropriate for
human detection rather than scene classification. Olive and
Torralba [15] took advantage of aggregated frequency infor-
mation to construct GIST feature, which calculated holistic
characteristics of scenes with five spatial properties (natural-
ness, openness, roughness, expansion, ruggedness).

In recent years, researchers have demonstrated that encod-
ing temporal clues can largely enhance the performance of
dynamic scene classification. As stated in [10], chaotic feature
is proposed for dynamic scene classification, which uses the
Lyapunov exponent to characterize the level of chaos in the
scene and correlation properties to estimate the complexity of
scenes. And thus the dynamic attributes of motion in scenes,
such as the degree of busyness, the degree of flow granularity
and the degree of regularity, are calculated. Except for this kind
of chaotic temporal feature, other temporal features are mostly
based on the optical flow method, which can capture the veloc-
ity information between subsequent frames further used for
classification. For instance, Laptev [16] and Dalal et al. [17]
use histogram of optical flow field to represent temporal cues.
Likewise, Vasudevan et al. also [18] build temporal 5DMFV
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feature to describe characteristics of motion in scenes based
on optical flow field. Nevertheless, these optical flow based
methods fail to generate an effective representation in some
special cases, where the complex motions often violate the
illumination constancy assumption, e.g., the flicker motion.

As both spatial and temporal clues are proven to be effi-
cient for dynamic scene classification, integrating them in the
spatio-temporal features becomes prevalent. One possibility to
construct spatio-temporal features is to transform current 2D
feature into 3D feature. As in [19], 3D SIFT feature evolved
from the widespread SIFT feature, is proposed to model 3D
objects or video resources. Similarly, 3D HOG [20] shows
improved results for action video classification. Moreover,
spatio-temporal orientation energy (SOE) features is proposed
in [7], by applying 3D Gaussian third-derivative filters in
videos. The spatial-temporal Laplacian pyramid (STLP) [21]
also show great effectiveness in extracting spatial and tem-
poral features from video sequences for action recognition.
In [22] and [23], the integration of SOE features and improved
bag of feature model have achieved state-of-the-art results
in dynamic scene classification field. Spatial-temporal ori-
ented energies have also been successfully used for action
recognition [24], showing impressive performance in multiple
benchmark datasets. In addition, based on handcrafted fea-
tures, supervised learning has recently been incorporated in
spatial-temporal local descriptor learning for action recogni-
tion, which demonstrates improved performance [25], [26].

Although the aforementioned hand-crafted features have
shown remarkable performance, the discriminative power
is still limited when compared with deep-learned fea-
tures [27], [28]. Nowadays, major attentions are paid on
the implementation of deep-learned features, showing great
effectiveness in handling large scale data in contrast to kernel
methods [29], [30].

B. Deep-Learned Features

Deep-learned features are obtained through convolutional
neural networks (ConvNets) with large amount of training
data, which has demonstrated astounding results on large scale
object recognition [31], [32]. However, since most ConvNets
features are designed for object detection task, it can not
be directly used for scene classification. To deal with this
problem, Zhou et al. [33], [34] introduced a new scene-
centric database called Places with over 7 million pictures of
scenes, based on which the newly trained ConvNets features
appear more suitable for scene classification task, such as
VGGnet [35], Resnet [36] and etc. Gong et al. [37] improved
the ConvNets by applying them within local multi-scale
patches and further integrated the patch-based ConvNets with
global ConvNets, which can capture both detailed information
and holistic characteristics in scenes.

Differently from most ConvNets with a focus on
static image scene classification, many researchers pay
more attention to the video based scene classification.
Gangopadhyay et al. [38] proposed a statistical aggregation
solution based on convolutional neural networks for dynamic
scene classification. The convolutional neural networks (CNN)

use large datasets to acquire spatial information and the
resulting CNN features are further analyzed by statistical
methods in the temporal domain. Tran et al. [39] proposed
C3D feature that transforms 2D ConvNets to 3D ConvNets,
which exploits deep information in both spatial and temporal
domain. And it has achieved good performance on various
video analysis tasks, including dynamic scene classification.
Unfortunately, the original C3D model was trained on sports
video datasets and contains no prior information related to
dynamic scenes. Due to the huge computational cost, C3D
can only handle small video clips with few frames and
discard the long term information in videos.

This paper is partly inspired by deep-learned feature presen-
tation of scene classification. Compared with current ConvNets
that only focus on the short term motion or spatial properties,
the proposed method pays more attention to the long term
motion information which combines long term information
with short term deep information. In this way, these two
complementary representation can make a better understanding
toward dynamic scenes.

III. LONG-SHORT TERM FEATURES

A. Overview

Due to distinct spatial and temporal characteristics in
dynamic scenes, understanding scenes from multiple per-
spectives can be very beneficial. Moreover, both short and
long term temporal information are essential for compre-
hensive representation of dynamic scenes and will be fully
explored in our framework. As illustrated in Fig. 2, for the
given video clips or frames we firstly employ CNNs to
extract high-level features from frames and short video clips.
We choose VGGnet [35] and C3D [39] to extract spatial
and short-term temporal motions, which achieves short-term
deep features (STDF). These STDF are then arranged in
the temporal order and serve as inputs to extract long-term
temporal dynamic features. We introduce the autoregressive
moving average (ARMA) model to calculate the long-term
frequency features (LTFF), which captures the long-term tem-
poral motion patterns of dynamic scenes. Since both STDF
and LTFF are essential and capture complementary scene
properties, these two features are concatenated into a holistic
feature vector called long short term features (LSTF) for final
scene representation which is fed into linear support vector
machines (SVM) for classification.

B. Short-Term Deep Features

The STDF mainly focuses on static spatial appearance
and short-term motion properties. In the context of dynamic
scenes, both handcrafted and learned features could be used.
Among them, the deep-learned features are preferred because
of their highly discriminative power compared to hand-crafted
features [27]. We adopt two variants of CNN architectures,
VGGnet [35] and C3D [39], to build up STDF. VGGnet
mainly focuses on extracting spatial features from each frame
of the video, while C3D can extract both spatial and short-term
temporal features from short video clips.
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Fig. 2. Framework of the long-short term feature (LSTF). The LSTF reflects the diverse aspects of dynamic scenes, including long term frequency aspect
as well as short term deep aspect. Short term deep feature is responsible for the static properties such as background and short term motion cues. While long
term frequency feature is capable of representing long term properties, e.g., regularity or periodicity. Together they yield complementary representation for
dynamic scene classification.

1) VGGnet Architecture: The VGG network takes frames
of the size of 224 × 224 as inputs and passes through a stack
of convolutional layers of size 3 × 3 with stride 1. Spatial
pooling is conducted by 5 max-pooling layers with stride 2,
followed by some of the convolutional layers. After a series of
convolutional layers and max-pooling layers, there are three
fully-connected layers, which output a 4096-d feature vector.

2) C3D Architecture: In contrast to 2D convolutional neural
networks, C3D uses 3D convolutional layers and extracts
both spatial and temporal information to generate spatio-
temporal representation. The network architecture of C3D has
8 convolution layers, 5 pooling layers and 2 fully connected
layers. Within each convolution layer, the 3D convolution
filters are applied with the size of 3×3×3 and stride 1×1×1.
All 3D pooling layers are 2×2×2 with stride 1×1×1, except
pool1 with kernel size of 1 × 1 × 1 to preserve the temporal
information in the early phase. Due to the nature of three-
dimensional convolution, C3D is well suited for extracting
short-term dynamic of scenes. We have 4096-d output units
for each fully connected layer as the feature vector.

3) Pre-Training and Feature Extraction: The VGGnet is
pre-trained on the Places dataset [34], which contains over
10 million scene images, labeled with 476 scene semantic
categories covering numerous types of environments encoun-
tered in the world. With the help of large scene dataset, these
CNNs can well capture scene properties that are useful for
scene classification. In VGGnet, the given video frames are
processed by CNN networks and the outputs of f c7 layer
in VGGnet extracted from each frames are averaged to form
the representation. Different from these image based CNNs,
C3D with 3D convolutional layers is trained on the sports-1M
dataset, which has about 1 million sports videos downloaded
from YouTube. In C3D, a given video is split into 16-frame
long clips with a 15-frame overlap between two consecutive
clips. Then, these video clips are passed into the C3D network
to extract f c6 activation. As we have multiple f c6 activations
obtained from each video clip, the average temporal pooling
is finally used resulting in a 4096-d vector. In our method,
the dense overlap setting is deployed for two reasons. Firstly,
it can preserve more information within STDF. Secondly, since
we use STDF as the inputs for constructing our LTFF, more
samples are required to generate more effective representation.

C. Long-Term Frequency Features

Long-term motion patterns carry discriminative information
to distinguish different scenes. Previous attempt tried long
short-term memory (LSTM) [11] to explore long term tem-
poral relationships in human action recognition. The LSTM
network processes CNN activations as inputs and learns long
term properties from these frame-level CNNs. However, since
training such long term deep networks requires a very large
of samples, its application in dynamic scene field is rather
limited due to inadequate amount of dynamic scene videos.
To overcome this problem, we introduce the autoregressive
moving average (ARMA) model to extract long term frequency
features (LTFF).

LTFF focuses on the interpretation of power spectrum in a
long-term temporal range. In the context of dynamic scenes,
the energy of power spectrum in the frequency domain is
directly correlated with the statistical long term properties
in the temporal domain, such as periodicity or regularity.
As a result, the distribution of such power spectrum can be
utilized for distinguishing diverse motion patterns. The power
spectrum may be calculated directly from time series of raw
pixels [40]. However, in the case of scene understanding,
the raw pixels would not be suitable in that noises and camera
movement can largely affect the construction of LTFF. To cir-
cumvent this problem, we work on CNN features instead of
raw pixels. These CNNs extract features from the low level to
high levels, representing simple edges to complex objects. The
proposed LTFF features use high-level features from CNNs as
inputs to measure how the motion patterns of these objects
change over long periods of time. Compared with raw pixels,
high-level features contain less noises and are more suitable
for the construction of LTFF. For each dimension of high level
features from CNNs, the distribution of power spectrum is
calculated to discriminate diverse motion patterns in scenes.

Specifically, the short term deep features by C3D and
VGGnet are chosen as the input to compute the LTFF. For
each video clips or frames, we first obtain features from
CNNs denoted as X with dimension of 4096 in VGGnet and
C3D. We then align these features along temporal range as
X (t), t = 1, 2, 3 . . . T , where T is the total number of video
clips or video frames. In the end, these X (t) samples can be
taken as input data for the LTFF.
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Traditionally, the power spectrum can be estimated via
Fourier based methods, such as periodogram. However, those
methods are highly sensitive to signal noises [40], which
are consequently not suitable for dynamic scene data that
contains much interference between background and target
object. Moreover, due to the finite frames of video resources,
the resolution of power spectrum estimated by Fourier based
methods is very limited. To overcome those shortcomings,
the latest time series models are used for spectral analysis [41],
including autoregressive (AR), moving average (MA) and
autoregressive moving average (ARMA) models. In what
follows, we will firstly introduce the principles of time series
models and then explain how to compute those models for
power spectrum estimation.

1) Temporal Modeling: We model dynamic scenes by time
series models. Given a stationary time series signal {Xt },
t ∈ N , it can be represented by a discrete-time autore-
gressive moving average ARMA(p, q) process, written as in
Eq. (1) [41]:

xt + a1xt−1 + · · · + apxt−p = εn + b1εn−1 + · · · + bqεn−q ,

(1)

where εt is a purely random white noise process of inde-
pendent identically distributed stochastic variables with zero
mean and variance σ 2

ε , {a1, · · · , ap}, and {b1, · · · , bq} are the
parameters in the ARMA model and p, q denote the order of
the ARMA model.

This time series model in Eq. (1) is purely AR for q = 0
and purely MA for p = 0. It represents a parametric estimate
of the power spectral density for the given time series data.
The power spectral density h(ω) by the ARMA model is fully
determined by the parameters in Eq. (1) and the variance σ 2

ε ,
which can be defined as

h(ω) = σ 2
ε

2π

∣
∣
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∣
∣
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∣
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ai e− jωi

∣
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2 , (2)

where ω denotes the frequency.
In modern time series models, it is essential to find the

most suitable model with a proper order. For the same data
source, the power spectrum estimated by AR, MA and ARMA
with diverse order can be very different. In other words,
if the model type and orders are selected properly, the time
series models can provide the best solution [41]. Fortunately,
Broersen [41] established an ARMASA model to deal with
the model selection problem, which can automatically select
the best model type and model order to estimate the power
spectrum of the measured data. It calculates a number of
candidate AR, MA and ARMA models and uses a statistical
criteria to select the best fitting one.

2) Power Spectrum Estimation: The construction of appro-
priate time series models involves a number of interrelated
problems, including the parameter estimation ({a1, · · · , ap}
and {b1, · · · , bq}), order selection (choosing the order p and
q), and model identification (deciding among AR, MA and
ARMA models).

In ARMASA, the problem mentioned above can be solved
by following previous work [41]. The ARMASA algorithm
consists of three main parts, i.e., AR model estimation, MA
model estimation and ARMA model estimation. For the AR
model, frequently-used estimators include the Burg method,
Yule-Walker method and Forward-Backward Least Squares
estimators. Since under the context of dynamic scenes, we only
have limited data samples for estimation, the Burg estimator
deserves a preference [40], [42]. And the order of the AR
process can be measured by the Combined Information Crite-
rion CIC(p) defined as:

CIC(p) = log(RES(p))

+ max[1 + p
N−p+1

1 − p
N

− 1, 3
p

∑

i=1

1

N − i + 1
], (3)

where RES(p) is the residual variance.
For the MA model, the Durbins method [43] is used for

estimating MA parameters, which calculates a long AR model
with the Burg method to approximate the MA process. The
performance of the Durbins method can be improved by
selecting a proper order [44]. The MA order q is selected
with G IC(q, 3), defined as:

GIC(q, 3) = log(RES(q)) + 3q

N
. (4)

The ARMA(p,q) model is estimated with the Durbins
method [45], which calculates the parameters by minimizing

N∑

n=max(p,q)+1

{xn + a1xn−1 + · · · + apxn−p

− εn − b1εn−1 − · · · − bqεn−q }2. (5)

Finally, having the AR, MA and ARMA models, the predic-
tion error of these three resulting models is estimated with the
given data [46]. This step is to find the most suitable model
for calculating the long term information. For MA and ARMA
models, the prediction error is calculated by

PE(m) = {RES(m)}1 + m
N

1 − m
N

, (6)

where m is the number of estimated parameters in the model.
For AR(p) model, the prediction error is given by the expres-
sion [46]:

PE(p) = {RES(p)}
p

∏

m=1

1 + 1
N+1−m

1 − 1
N+1−m

. (7)

The model type with the smallest estimate for the prediction
error is selected. In this way, the most suitable model type
with proper order can be determined for the given time series
samples.

To sum up, the ARMASA can automatically select the best-
fitting model (AR, MA or AMRA) as well as a proper order
for estimating the parameters in Eq. (1), which can be further
used to extract the power spectrum of time series as our LTFF
in Eq. (2). The power spectrum in the frequency domain
is directly correlated with the energy of periodic motions
in temporal domain, which enables distinguishing distinctive
motion patterns of scenes from different categories.
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TABLE I

PERFORMANCE OF STATE OF THE ART METHODS ON THE MARYLAND DATASETS

D. Long-Short Term Features

In order to achieve complementary and comprehensive fea-
ture representation of dynamic scenes, we integrate both STDF
and LTFF into long-short term features (LSTF). Since we have
employed two different CNN architectures, i.e., VGGnet and
C3D, our LSTF can be computed based on VGGnet, C3D and
their combination. In the end, the LSTF concatenates STDF
and LTFF into one single holistic representation. Because
the dimensionality of LTFF is very high, feature reduction
is necessary before concatenation.

1) PCA and Normalization: In our method, STDF and
LTFF are used to construct our LSTF. Compared with 4096d
STDF, LTFF is of very high dimensionality and needs reduc-
tion. Specifically, for each dimensions in the features extracted
from CNNs, the corresponding long term frequency features
are constructed as a 16-d vector. As in C3D and VGG networks
which have produced 4096-d feature vectors, the correspond-
ing LTFF are 4096 × 16 = 65536-d vectors. It is compu-
tationally expensive to handle such high-dimensional features
for classifiers, which would also lead to overfitting. Therefore,
the principal component analysis (PCA) is deployed to reduce
the dimensionality of LTFF. After PCA, the dimension of
LTFF can be approximately reduced to 100, which can further
improve the computational efficiency.

Since we use multiple views to describe scene properties
and construct our LSTF with STDF and LTFF, normalization
is required to avoid bias for proper concatenation of these
features. Specifically, the min-max normalization is introduced
in Eq. (8)

x̄ = 2(x − xmin)

xmax − xmin
− 1, (8)

where x is the original input feature and x̄ is the normalized
output feature.

IV. EXPERIMENTS AND RESULTS

We conduct extensive experiments on three publicly avail-
able datasets, i.e., YUPENN [7], Maryland and UCF101 [12],
in which actions in UCF-101 are treated as a special type
of dynamic scenes. Our method consistently achieves high
performance on all three datasets and largely surpasses most of

state-of-the-art methods. We have also provided comprehen-
sive experimental analysis to show the effectiveness of each
component in our method.

A. Implementation Details

For each video sample, VGGnet takes individual video
frames with a stride of 1 frame as the input and generates
spatial features, which are then averaged and normalized;
while C3D takes 16-frames video clips with overlap 15 as
the input and generates spatio-temporal features, which are
also averaged and normalized; the outputs from VGGnet and
C3D build STDF. The LTFF are computed based on these
STDF. Since both STDF and LTFF are essential for classifi-
cation, these two complementary features are normalized by
minmax normalization and concatenated into the long-short
term features (LSTF). For a fair comparison, we use the linear
SVM classifier, where parameters of SVM are empirically set
to C = 0.01, e = 0.001 by following previous work [39].
To keep the consistency with common protocols [7], [8], [18],
we use the leave-one-out cross-validation (LOOCV) rule for
dynamic scene classification and 3-fold cross validation for
UCF-101.

B. Results on Maryland

1) Dataset: The Maryland dataset contains 13 dynamic
scene categories, with 10 samples in each category. The
video samples are collected from Internet sharing sites, e.g.,
YouTube. This dataset is very challenging that the videos have
large variation in illumination, image scale, view point and
video length. Also, the camera motions as well as scene cuts
are confounded with object motions, which further increase the
complexity of dynamic scenes. The Maryland dataset is very
small with only 130 available video samples. Thus, we use
leave-one-out strategy for our experiments. We conduct the
experiments 10 times and each time 9 video samples from
each category are used for training and 1 video sample for
testing. The average accuracy rates are calculated from these
10 times experiments.

2) Performance: In Table I, we compare our LSTF with
state-of-the-art methods on the Maryland dataset. The top-
performing algorithm is our newly proposed LSTF which
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TABLE II

PERFORMANCE OF STATE OF THE ART METHODS ON THE YUPENN DATASET

achieves 95% accuracy rates on average and outperforms
the state-of-the-art methods by a large margin, e.g., 9% in
DPCF [23] and 15% in C3D [39]. On a single class level,
it is particularly interesting to note that most previous methods
exhibit weaker performance on scenes containing different
patterns of water, e.g. boiling water with DPCF, waterfall with
C3D and whirlpool with CSR. Distinguishing diversified water
motions tends to be the most difficult for previous algorithms,
suggesting that capturing differences between water patterns
based on their dynamics remains unsettled. Compared with
previous methods, our newly proposed LSTF present outstand-
ing performance on these scenes, with 90% in boiling water,
100% in waterfall and 90% in whirlpool. The improvement is
largely benefit from the introduce of long-short term motion
properties that emphasize the differences of dynamics in both
long and short term scale, indicating the effectiveness of long-
short information for dynamic scene classification.

C. Results on YUPENN

1) Dataset: The YUPENN dataset contains 14 different cat-
egories of videos related to dynamic scenes, with 30 samples
in each of these categories. These video samples are captured
with fixed camera and last about 5 seconds having 150 frames.
Because our dynamic scene dataset is rather small, in the
following experiment the leave-one-out strategy is adopted
to generate more precise and convincing results. To be more
specific, we conduct 30 times experiments, each of which uses
29 samples in each category for training the SVM classifier
and the remaining 1 sample for testing. The average accuracy
rates are calculated from these 30 times experiments.

2) Performance: Since videos in the YUPENN dataset
are captured with fixed cameras, the task is relatively easy
in comparison to the Maryland dataset. As can be seen
in Table II, the proposed LSTF model achieves state-of-
the-art performance on the YUPENN dataset, outperforming
previous hand-crafted features and other CNN based methods.
Compared with hand-crafted features such as SOE and SFA,
the improvements is over 8%. While for CNN based methods
such as VGGnet and C3D, our LSTF can still improve the
performance. The performance gain mainly stems from the
consideration of long term properties and the integration of

TABLE III

PERFORMANCE OF STATE OF THE ART METHODS

ON THE UCF-101 DATASET

Fig. 3. The performance comparison of VGG, C3D and their combinations
on three datasets.

diverse CNN architectures with complementary representation.
Outstanding performances (over 95%) are acquired by most
algorithms, indicating that performance is saturated on this
dataset.

D. Results on UCF-101

1) Dataset: The UCF-101 [12] contains 13320 videos with
101 action categories covering a broad set of dynamic scenes.
We follow the 3-fold evaluation protocol conducting 3 times
experiments, each of which uses 2/3 samples for training
and 1/3 samples for testing. The average accuracy rates are
calculated based on these three times experiments. Note that
we treat actions in this dataset as a special type of scenes,
we further apply our method on UCF-101 dataset and test
how our LSTF model perform in this dataset.

2) Performance: We compare our LSTF with state-of-the-
art methods on the UCF-101 dataset. The results are reported
in Table III. The performance of our LSTF is better to baseline
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Fig. 4. Performance comparison of STDF, LTFF and LSTF, on Maryland, YUPENN and UCF 101 datasets, respectively.

Fig. 5. Long term effect (LTFF) on the Maryland dataset.

methods including VGGnet and C3D. The results show that
the integration of two CNN architectures can improve 1%
performance. And with the introduce of long-term clues, our
newly proposed LSTF further increase the accuracy rates by
nearly 2%. Consistent with previous two datasets, the results
demonstrate the effectiveness of our long-short term features.
Because in our method we only use intensity information for
representation, the performance is still lower than methods
that use optical flow, e.g. Two-Stream ConvNet. To summa-
rize, the performance for action recognition shows the great
generality of the proposed LSTF for video representation.

E. Ablation Studies

We conduct three sets of experiments to separately evaluate
the contribution of each components in our model to the
overall performance. In our model, we have three main compo-
nents, namely, STDF, LTFF and LSTF. For STDF, we evaluate
its performance with different CNN architectures and their
combinations. For LTFF, we test the impact of the temporal
scale T in LTFF on the overall performance and demonstrate
that long-term information is beneficial for dynamic scene
classification. For LSTF, we evaluate the contributions of
STDF, LTFF and LSTF to the performance, which shows that
all of them are indispensable in our model.

1) CNN Architectures in STDF: Fig. 3 shows the results
obtained using VGGnet, C3D and their combination on the
Maryland, YUPENN and UCF-101 datasets. It is interesting
to find that VGGnet with only spatial scene properties can
achieve better performance than C3D on the Maryland dataset.
This could be due to that VGGnet is trained on large scene
dataset and can well capture scene properties, while C3D is
trained on the sports-1M dataset which is good at extracting

motion information rather than scene properties. Note that
both scene properties and motion clues are indispensable.
We concatenate features from VGGnet and C3D to better
describe dynamic scenes. The combination of features from
VGG and C3D achieves 5% improvement on the Maryland
dataset.

On the YUPENN dataset, VGGnet, C3D and their com-
bination all delivers high performance with the recognition
rates over 95%. The results have shown that different CNN
architectures, i.e., VGG and C3D, provide complementary
information for comprehensive representation of scenes, which
improve the overall performance.

Similarly, with regard to the action recognition task, we also
use multiple CNN architectures for evaluation. The VGGnet
is pre-trained on the Imagenet dataset [31], which uses single
frame of videos for representation. C3D is pre-trained on the
sports-1M dataset, using 16-frame video clips for representa-
tion. As shown in Fig. 3, C3D performs better than VGGnet.
This is because VGGnet is trained on the static image dataset
without any motion clues. While C3D is trained on large
quantities of sports videos and is very good at extracting
human action information. Furthermore, the integration of
different CNNs extracts complementary properties and the
experiment demonstrates that integrated CNNs can greatly
improve the performance.

2) Evaluation of Components in LSTF: We show the per-
formance of STDF, LTFF and LSTF in Fig. 4, which aims to
demonstrate the significance of long term properties and the
complementary effect of these features. In the left column of
Fig. 4, we evaluate each components on the Maryland dataset.
Since our STDF can be multiple choices such as VGGnet
and C3D, these individual STDF as well as the corresponding
LTFF and LSTF are compared in the experiment. We can
observe from Fig. 4 that by integrating STDF with LTFF in the
LSTF, the performance can be enhanced for both VGGnet and
C3D architectures. This indicates that long term properties are
essential for the understanding of dynamic scenes. Therefore,
the combination of STDF and LTFF used in the algorithm
generates a complementary and informative representations
of dynamic scenes. And with the help of integrated CNN
architectures, the performance can be further improved.

In the middle column of Fig. 4, we conduct experiment on
YUPENN dataset. Consistent with Maryland dataset, by inte-
grating STDF with LTFF in the LSTF, the performance can
be enhanced under different CNN architectures on YUPENN
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dataset. Considering the fact that these CNNs have achieved
an accuracy of over 95%, the performance is saturated on this
dataset, as described in [23] and the performance gain is not
as obvious as the Maryland dataset.

The performance comparison of STDF, LTFF and LSTF
on the UCF-101 dataset is shown in the rightmost column of
Fig. 4. Similarly, from the results, we find that by integrating
STDF with LTFF in the LSTF, the performance can be
enhanced under various CNN architectures, showing the great
effectiveness of the LSTF for scene representation.

3) Temporal Scales in LTFF: The temporal scales in LTFF
also show varied effects on the performance, which have also
been exploited in our experiments. The temporal range T
controls how many frames we utilize to obtain long term
temporal features. We evaluate the effect of the temporal range
on the Maryland dataset. In this dataset, the video samples
have large variation in length, ranging from 40 frames to over
2000 frames, and thus we test the performance with T =
25, 50, 100, 200 and all frames. The classification performance
under various temporal ranges of T is shown in Fig. 5. The
results indicate that a larger temporal range leads to higher
performance, and this would be due to that long term observa-
tion obtains more information such as regularity or periodicity.
To summarize, the optimal temporal range is reached when
using all video frames. We therefore use all frames of the
video as input in our experiments.

V. CONCLUSION

In this paper, we have presented a new unified frame-
work to build long-short term feature (LSTF) presentation of
dynamic scenes. Our LSTF jointly encodes spatial and tem-
poral information of dynamic scenes in one single framework.
Two variants of deep convolutional neural networks (CNN)
have been adopted to extract spatial and short-term temporal
features, which establishes short-term deep features (STDF).
Based on STDF, autoregressive moving average (ARMA)
model is introduced into dynamic scenes to extract long-term
frequency features (LTFF). By combining STDF and LTFF,
we achieve long-short term features (LSTF) for comprehensive
and informative representation of dynamic scenes. We have
evaluated the great effectiveness of LSTF for dynamic scene
classification by extensive experiments on three challenging
datasets, i.e., YUPENN, Maryland and UCF101. Results have
shown that LTSF consistently achieves high performance
which is competitive to state-of-the-art methods.
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